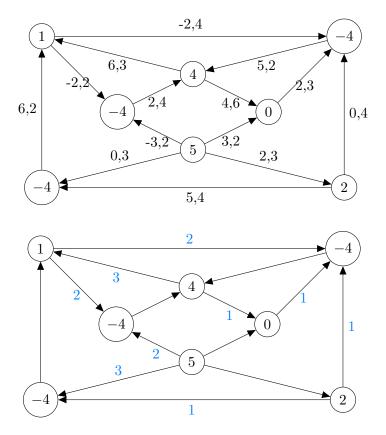
Minimum Cost Flow

Problem: There are n coal mines and m power plants. Power plants have demands, coal mines supply coal. How to transport the coal in order to satisfy the demands and minimize the cost of transportation?

Let G = (V, E) be a directed graph, $u : E \to \mathbb{R}^+$ be capacities on edges and $c : E \to \mathbb{R}$ be costs for every edge. We call $b : V \to \mathbb{R}$ with $\sum_v b(v) = 0$ a supply demand function or a boundary function.

b-flow is a function $f: E \to \mathbb{R}^+$ such that $f(e) \le u(e)$ and $\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) = b(v)$.

1: Find a *b*-flow which that minimizes $\sum_{e} c(e) f(e)$ in the following network, where *b* is in every vertex, edges are labeled by c, u.



Solution: The value of the flow is 15.

If b(v) > 0, then b represents a supply at v, if b(v) < 0, then b represents a demand at v. Like flows but multiple sources and sinks.

Minimum Cost Flow Problem: find a b-flow f that minimizes $c(f) = \sum_{e} c(e)f(e)$.

2: Show that a *b*-flow *f* exists if and only if

$$\sum_{e \in \delta^+(X)} u(e) \ge \sum_{v \in X} b(v) \text{ for all } X \subseteq V(G).$$
(1)

(That is, there is always enough capacity to take excessive flow out of X.)

Solution: \Rightarrow If there is a flow, the condition is easily satisfied, since $f(e) \leq u(e)$.

 \Leftarrow Suppose there is no *b*-flow *f*. Add new vertices *s* and *t*, where *sv* is an edge for every $v \in V$ with b(v) > 0. Assign u(sv) = b(v). Likewise, add edge *vt* with u(vt) = -b(v) wherever b(v) < 0. Call the new network (G', u', s, t).

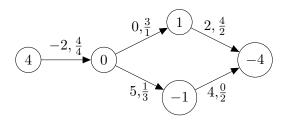
©€\$© by Bernard Lidický

No *b*-flow in *G* implies max-flow f' in (G', u', s, t) has value strictly less than $(\sum_{v} |b(v)|)/2$. The max-flow f' gives a min-cut *X*. The cut *X* violates (1).

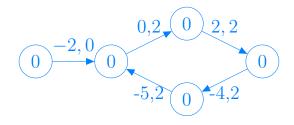
Consequence: It is possible to detect when there is no solution (no *b*-flow exists).

A *circulation* is a flow in a network where b(v) = 0 for every vertex.

3: Let f and f' be two *b*-flows. Consider their difference f - f' and show that it is a circulation. Try on example first: Edge labels are $c, \frac{f}{f'}$. Compute c(f), c(f'), find the difference.



Solution: c(f) = 5, c(f') = 19. Cost difference c(f) - c(f') = -14. In picture, we assign the f - f' to each edge, if the difference is negative, flip the edge, negate the cost ,and assign f' - f. The picture gives a circulation with cost -14.



In general, the difference between two flows f and f' is a circulation whose cost is the difference in the costs of f and f'. Since f and f' are b-flows, we get $\sum_{e \in \delta^+(v)} (f(e) - f'(e)) - \sum_{e \in \delta^-(v)} (f(e) - f'(e)) = b(v) - b(v) = 0$, Hence the difference is a circulation. Summing the difference gives the difference in costs.

Algorithm: Minimum Cost Flow

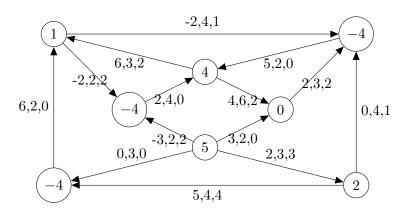
- 1. let f be any b-flow
- 2. while there exists a negative cost cycle C in the residual graph G_f ,

3. pick C of minimum mean cost $= \frac{\sum_{e \in C} c(e)}{|C|}$.

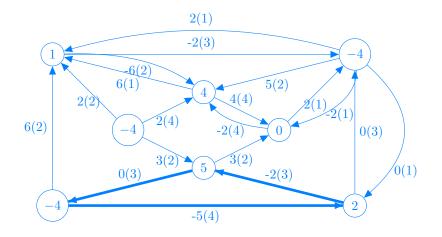
4. augment on C

Minimum mean cost cycle gives polynomial time $O(m^2n^2\log n)$ (picking any cycle - same problem as Ford-Fulkerson).

4: Find a negative cycle in a residual graph for the following, where on edge is c, u, f in this order.



Solution: Residual graph is created by keeping edges e with nonzero u(e) - f(e) and adding reverse edges if f(e) > 0. In order to find a negative cycle, we only need to know the cost. It is depicted in in bold.



5: Show that the algorithm is correct when it finishes. That is, f is an optimal b-flow iff it has no negative cycle.

Solution: \Rightarrow If there is a negative cycle, augmenting on it, it will decrease the cost of f, contradiction with the optimality of f.

 \Leftarrow If there is a better flow f', the difference between flows is a circulation. Since the sum of the circulation is negative, it must contain a negative circuit.

6: How can we find a minimum mean cycle?

Solution: Wait for the next worksheet.